Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Demonstration result of sample assay system equipped alternative He-3 detectors

Nakamura, Hironobu; Mukai, Yasunobu; Tobita, Hiroshi; Nakamichi, Hideo; Ozu, Akira; Kureta, Masatoshi; Kurita, Tsutomu; Seya, Michio

Proceedings of 37th ESARDA Annual Meeting (Internet), p.45 - 53, 2015/08

JAEA conducted an R&D project to develop a new type of neutron detector using ZnS/$$^{10}$$B$$_{2}$$O$$_{3}$$ ceramic scintillator (as an alternative neutron detector to He-3) with support of Japanese government. The design of the JAEAs alternative system (ASAS: Alternative Sample Assay System using ceramic scintillator tubes) refers basically to the INVS (INVentory Sample assay system) which is the passive type of neutron assay system equipped total 18 He-3 tubes and capable of measuring the small amount of Pu in the MOX powder or Pu nitrate solution in a vial for nuclear material accountancy and safeguards verification. In order to prove the alternative technology and the performance instead of He-3 detector, and to establish Pu measurement capability, JAEA developed and fabricated ASAS equipped 24 alternative ceramic scintillator tubes (which is equivalent to the same counting efficiency of INVS) and demonstrated. The demonstration activity implemented the confirmation of reproducibility about sample positioning, optimization of detector parameters, counting statistical uncertainty, stability check and figure of merit (FOM) using Cf check source and actual MOX powder in PCDF (Plutonium Conversion Development Facility). In addition, performance comparison between the current INVS and the ASAS was also implemented. In this paper, we present demonstration results with design information with Monte-Carlo simulation code (MCNP).

Journal Articles

Development and demonstration of a Pu NDA system using ZnS/$$^{10}$$B$$_{2}$$O$$_{3}$$ ceramic scintillator detectors

Nakamura, Hironobu; Ozu, Akira; Kobayashi, Nozomi*; Mukai, Yasunobu; Sakasai, Kaoru; Nakamura, Tatsuya; Soyama, Kazuhiko; Kureta, Masatoshi; Kurita, Tsutomu; Seya, Michio

Proceedings of INMM 55th Annual Meeting (Internet), 9 Pages, 2014/07

To establish an alternative technique of He-3 neutron detector that is used for nuclear material accountancy and safeguards, we have started an R&D project to develop a new type of neutron detector (Pu NDA system) using ZnS/$$^{10}$$B$$_{2}$$O$$_{3}$$ ceramic scintillator with support of Japanese government. The design of the alternative system (ASAS: Alternative Sample Assay System) is basically referenced from INVS (INVentory Sample assay system) which is passive neutron assay system of plutonium and has total 18 He-3 tubes (about 42% of counting efficiency), and the small amount of Pu in the MOX powder or Pu nitrate solution in a vial can be measured. In order to establish the technology and performance after the fabrication of the new detector progresses, we are planning to conduct demonstration activity in the early 2015 experimentally. The demonstration activity implements the confirmation of reproducibility about sample positioning, optimization of detector parameters, counting statistical uncertainty, stability (temperature and $$gamma$$-ray change) check and figure of merit (FOM) using check source and actual MOX powder. In addition to that, performance comparison between current INVS and the ASAS are also conducted. In this paper, we present some analytical study results using a Monte-Carlo simulation code (MCNP), entire ASAS design and demonstration plan to prove technology and performance.

Journal Articles

Design and implementation of $$^{10}$$B+$$^{3}$$He integrated continuous monitor (BHCM) to holdup monitoring in glove boxes

Mukai, Yasunobu; LaFleur, A. M.*; Nakamura, Hironobu; Menlove, H. O.*; Swinhoe, M. T.*; Marlow, J. B.*; Kurita, Tsutomu

Proceedings of INMM 55th Annual Meeting (Internet), 8 Pages, 2014/07

In order to improve the safeguards and nuclear material accountancy of holdup measurements and establish an alternative technology for $$^{3}$$He shortage, we have designed the $$^{10}$$B + $$^{3}$$He Integrated Continuous Monitor (BHCM) and implemented the measurements to continuously monitor the holup in gloveboxes at Plutonium Conversion Developoment Facility. In this paper, we present the outline of BHCM, the comparison between MCNP simulations and the measured results in preliminaly test and a demonstration of process monitoring ability during operation to see the relation between Totals trend and operational status by using $$^{10}$$B detection tubes.

3 (Records 1-3 displayed on this page)
  • 1